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Force of infection: a determinant of vaccine efficacy?
David C. Kaslow 1✉

Vaccine efficacy (VE) can vary in different settings. Of the many proposed setting-dependent determinants of VE, force of
infection (FoI) stands out as one of the most direct, proximate, and actionable. As highlighted by the COVID-19 pandemic,
modifying FoI through non-pharmaceutical interventions (NPIs) use can significantly contribute to controlling transmission and
reducing disease incidence and severity absent highly effective pharmaceutical interventions, such as vaccines. Given that NPIs
reduce the FoI, the question arises as to if and to what degree FoI, and by extension NPIs, can modify VE, and more practically, as
vaccines become available for a pathogen, whether and which NPIs should continue to be used in conjunction with vaccines to
optimize controlling transmission and reducing disease incidence and severity.
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INTRODUCTION
Lower apparent vaccine efficacy (VE) in low resource settings,
when compared to VE observed in high resource settings, has
been reported for several pathogens, most notably poliovirus,
typhoid, and rotavirus1–5. Observed VE also varied when
evaluating a malaria vaccine candidate in different parasite
transmission settings6–8. Numerous economic, social, and biolo-
gical factors have been proposed to explain these setting-
dependent variations in VE3,9–11. Many, if not most, of the
proposed economic and social determinants of VE, such as,
country income status, living conditions, access to healthcare,
appear to act indirectly and non-specifically on VE; whereas
many but not all biological factors, such as co-infections,
malnutrition, and enteropathy, presumably act directly and
proximally on VE. More practically, identification of direct and
proximal determinants of setting-dependent VE that hold the
promise of actionable intervention(s) seem a most urgent need
in efforts to enhance and/or sustain VE.
The COVID-19 pandemic has highlighted the contribution of

non-pharmaceutical interventions (NPIs) in controlling trans-
mission and reducing disease incidence and severity12,
particularly in the absence of highly effective pharmaceutical
interventions, such as vaccines. NPIs also contribute to
controlling other major human diseases, including use of
condoms for HIV/AIDS13, bed nets for malaria14, and hand
washing for diarrhea15. By reducing the number of (suscep-
tible) individuals effectively contacted by each (infected)
person, e.g., through physical barriers, distancing, and masking,
NPIs reduce λ, the force of infection (FoI) (see Box 1, Glossary of
Key Terms). As vaccines become available for a pathogen, the
question arises as to if and which NPIs should continue to be
used, if not prioritized16. This then begs the broader use-
inspired scientific question, as raised previously8: after optimiz-
ing the vaccine immunogen, formulation, dose level, and
regimen, what remaining determinants of VE are amenable to
intervention? More specifically, given the role of NPIs in
reducing the FoI, if and to what degree is FoI, and by extension
NPIs, a determinant of VE?

Interrogating the potential relationship of FoI and setting-
dependent VE
A two-step approach was taken to interrogate the potential
relationship between FoI and VE. The first explored three
mathematical scenarios of VE as a function of various FoI settings.
The second followed up on the decades-old observations of lower
apparent efficacy of oral poliovirus1 and oral typhoid vaccines5 in
low resource settings when compared to high resource settings.
This empiric interrogation assessed the correlation between the
incidence of disease in the placebo population (as a surrogate of
FoI in the study population) and the observed VE in different
geographical settings. Recent Phase 3 studies of malaria and
rotavirus vaccine candidates across a number of settings,
including low and high resource settings6,17, provided data for
empirically assessing if and how FoI might be a determinant of VE.
Both the thought experiment of setting-dependent VE of a

hypothetical vaccine and the retrospective analyses of rotavirus
and malaria Phase 3 efficacy results make a multitude of
assumptions that limit the robustness and soundness of any
conclusions. For simplicity, factors previously shown or hypothe-
sized to influence transmission, susceptibility, VE, and/or FoI, such
as, country income status, age, underlying medical conditions, co-
infections, access to healthcare, seasonality, NPI use, spreading
events, and strain differences across different settings, and pre-
exposure effect were excluded from consideration in both the
hypothetical VE or observed VE analyses.
Given these significant limitations in the analyses, the primary

goal of the present study was not to provide a definitive answer to
the questions of if and to what degree FoI determines VE in
different settings. Rather the goal of these analyses was to
continue to raise the awareness of the potential impact of FoI on
VE8,18, and to prompt prospective studies designed to assess if
and how NPIs might reduce FoI and enhance VE when vaccines
are introduced and scaled up. Ultimately well-designed studies
that directly evaluate the potential relationship of FoI and setting-
dependent VE will provide the evidence needed for well-informed
policy recommendations on the continued use or not of NPIs
during vaccine introduction and scale-up.
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Three scenarios of the potential mathematical consequences
of FoI on setting-dependent VE
The potential effects of FoI on the level of VE were explored in
three mathematical scenarios: (1) VEconstant, where VE is indepen-
dent of FoI; (2) VElinear, where VE decreases linearly as a function of
increasing FoI; and, (3) VEnatural log, where VE decreases
logarithmically as a function of increasing FoI. As noted above,
multiple simplifying assumptions were made when considering
the mathematical consequences of FoI on VE, including homo-
geneity in the population with respect to a number of factors,
such as, pathogen transmission, host susceptibility to infection
and disease (be it genetic or acquired), FoI over time in a specific
setting, and protective immunity as a result of vaccination across
settings.
With these simplifying assumptions in mind, equations that

define the three mathematical scenarios (see Box 2, VE as a
function of FoI) are shown graphically in Fig. 1, using the
example of a hypothetical vaccine that has a maximum VE of
83% studied under conditions of FoI that vary across two orders
of magnitude, from 0.03 to 3.50 infections/person-year. While
other more complex mathematical relationships between VE
and FoI merit consideration, these three simple equations
seemed a reasonable starting point from which to interrogate
observed data from Phase 3 VE studies conducted in multiple
epidemiological settings.

Empiric evidence of FoI on observed setting-dependent VE
Results from recent placebo-controlled Phase 3 studies of vaccine
candidates for two diverse pathogens, Plasmodium falciparum and
rotavirus, provided a database to determine which, if any, of the
three mathematical scenarios best explained any setting-
dependent differences in VE. The selection of malaria and diarrhea

as clinical endpoints provided an opportunity to analyze FoI and
VE for both vector-transmitted and fecal-oral-transmitted patho-
gens, as well as parenterally and orally administered vaccine
candidates, respectively. In addition to the assumptions men-
tioned above, several additional assumptions noted below
facilitated the analyses of these multi-setting VE studies of two
pathogens.
First and foremost, the analyses of both pathogens assumed

that the intent-to-treat (ITT) incidence of the most sensitive
definition of the mildest disease endpoint in the youngest age
cohort in the placebo arm best served as an internal Phase
3 study surrogate of λ, the FoI. The validity of this assumption
relies upon several other assumptions, including the absence
of any significant herd effect (see Box 1, Glossary of Key Terms)
on the control from the vaccinated arm of the Phase 3 study.
The rationale for making this herd effect assumption, typically
also assumed for the control group used in estimating VE in the
context of Phase 3 efficacy studies, relies upon: (1) the
relatively small proportion of the total population in the study
setting enrolled in the vaccinated group in the Phase 3 study;
and, (2) the timing of incident disease in the control group
relative to eliciting herd immunity and reaching the herd
immunity threshold (see Box 1, Glossary of Key Terms) in the
study population.
A third key assumption relied upon a comparison of

trendlines from the three mathematical scenarios described
above to the closest fit trendline of observed VE (VEobserved) as
a function of observed FoI (FoIobserved, incidence in the
placebo group) in each epidemiologic setting to determine if
and how VE varied as a function of FoI. In this regard, because
the Phase 3 VE results for both pathogens were known a priori
to vary by epidemiologic setting, the posterior probability was
low of selecting the VEconstant mathematical scenario to
categorize VEobserved as a function of FoIobserved. As noted
below for each specific analysis, the observed trendline may
not necessarily reflect a statistically significant association
between VEobserved and FoIobserved, as assessed by a regression
analysis.

Malaria parasite VE and FoI
A single pivotal Phase 3 VE study (NCT00866619) enrolled
15,459 participants in two age categories (young children aged
5–17 months and infants aged 6–12 weeks at the time of
enrollment) across 11 clinical research sites in seven African
countries (one site in Burkina Faso, Gabon, Malawi, and
Mozambique; two sites in Ghana and Tanzania; and three
sites in Kenya). The trial assessed, as a primary aim, VE of a
three-dose regimen of RTS,S/AS01E against clinical malaria

Box 1 Glossary of key terms

Force of infection: Rate at which susceptible individuals in a population acquire an
infectious disease in that population, per unit time. It is also known as the
incidence rate or hazard rate36.

λt ¼ ceIt
Nt

(1)

(see equation 2.13, ref. 36) where λt is the force of infection at time t, ce is the
number of individuals effectively contacted by each person per unit time, It is
the number of infected in the population at time t, and Nt is the number in the
population at time t.
Efficacy: The direct protection provided by vaccination against a defined
clinical endpoint; it excludes any indirect (herd) effect36. Vaccine efficacy
reflects the relative reduction between the vaccinated and control groups for
one or more specific clinical endpoints. Calculations of the relative reduction
typically use a hazard ratio, a risk ratio, or most simply, as shown below, an
incidence ratio37;

VE ¼ ARU� ARV
ARU

´ 100 ¼ 1�
IV
NV

IU
NU

´ 100 (2)

(see equations, ref. 38) where VE is the vaccine efficacy, ARU is the attack rate
in the unvaccinated population, ARV is the attack rate in the vaccinated
population, IV is the number of infected in the vaccinated population, NV

number in the vaccinated population, IU is the number of infected in the
unvaccinated population, and NU is the number in the unvaccinated
population.
Herd immunity: The proportion of a population immune to infection or
disease2,36.
Herd immunity threshold: The proportion of the population required to be
immune in the population for the infection incidence to reach steady state, i.e.,
the infection level is neither growing nor declining. To eliminate an infection in
the population, the proportion of the population that is immune to infection
must exceed this threshold value36.
Indirect (Herd) effect: The reduction in the rate of infection or disease in the
unimmunized portion of a population as a result of immunizing a proportion of
the population2.

Box 2 Vaccine efficacy as a function of force of infection

The following equations define mathematical relationships between vaccine
efficacy (VE) and force of infection (FoI) shown in Fig. 1, when the relationship of
VE is: (1) independent of FoI (VEconstant); (2) linear to FoI (VElinear); or (3)
logarithmic to FoI (VEnatural log):

VEconstant : VES ¼ �0 � FoIS þ VEmax (3)

VElinear : VES ¼ � FoIS � FoImin

FoImax � FoImin

� �
´ VEmax � VEminð Þ þ VEmax (4)

VEnatural log : VES ¼ � ln FoIS � ln FoImin

ln FoImax � ln FoImin

� �
´ VEmax � VEminð Þ þ VEmax (5)

Where VES is the VE in setting S, VEmax is the highest observed VE, and VEmin is
the lowest observed VE.
And where FoIS is the FoI in setting S, FoImin is the lowest observed FoI, and
FoImax is the highest observed FoI.
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over 12 months follow-up7. In the per-protocol population of
the 5–17 months age category, VEobserved was 51.3% (95% CI:
47.5–54.9; p-value < .0001) with a VEobserved range from 83.0%
(95% CI: 37.2–95.4; p-value 0.0079) in a low parasite transmis-
sion site (Kilifi, Kenya) to 44.0% (95% CI: 36.8–50.3; p-value
< .0001) in a high parasite transmission site (Nanoro, Burkina
Faso) (see Annex 6 Table 23, ref. 19). As noted above, the
intent-to-treat (ITT) incidence of the more sensitive secondary
definition of clinical malaria in the control group of infants
aged 6–12 weeks at the time of enrollment (see Annex 7 Table
177, ref. 20.) served as the internal Phase 3 study FoIobserved, the
surrogate of λ in the analyses.
The best fit trendline analysis of VEobserved as a function of

FoIobserved revealed a logarithmic relationship (Fig. 2, Observed
VE) with an R2 of 0.807. Regression analysis of VEobserved as a
function of ln FoIobserved revealed a Significance F of 0.006.
Using the VEnatural log equation (Box 2), the observed VEmax,
VEmin, FoImax, FoImin, and the FoIobserved from each site
generated a logarithmic relationship between the calculated

site-specific VE and FoIobserved (Fig. 2, Calculated VE). These
analyses suggest that malaria parasite FoI functions as a
determinant of RTS,S/AS01E VE.

Rotavirus VE and FoI
Multiple Phase 3 studies of two rotavirus vaccines, RV1
(Rotarix®) and RV5 (RotaTeq®), evaluated VE in diverse epide-
miologic settings17. In comparison to the analyses conducted
for malaria VE, the analyses of rotavirus VEobserved as a function
of rotavirus FoIobserved was complicated by the evaluation of
two different vaccine candidates, with two different regimens,
in several different clinical protocols. Some of the Phase
3 studies conducted in low resource settings did not collect
data on the incidence of rotavirus gastroenteritis (RVGE) of any
severity. The analyses excluded these studies due to the
absence of an intent-to-treat incidence of any severity RVGE
in the placebo group to serve as a surrogate of λ. The analyses
also excluded data from countries in which the placebo group

R² = 0.807
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Fig. 2 Vaccine Efficacy (VE) as a function of Force of Infection (FoI) for malaria vaccine. Best fit trendline analysis of observed vaccine
efficacy (VEobserved) as a function of observed force of infection (FoIobserved) is shown as a logarithmic relationship (blue dotted line)
with a R2 of 0.807. A regression analysis of VEobserved as a function of ln FoIobserved shown in the embedded table has a Significance F of
0.006. Using the VEnatural log equation (see Box 2, Vaccine efficacy as a function of force of infection), the observed VEmax, VEmin, FoImax,
FoImin, and FoIobserved were used to calculate the VEnatural log in the embedded table and the calculated VEnatural log shown graphically
(orange dotted line).
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Fig. 1 Vaccine Efficacy (VE) as a function of force of Infection (FoI) for hypothetical vaccine. Equations that define three mathematical
scenarios (see Box 2, Vaccine efficacy as a function of force of infection) are shown graphically, using as an example a hypothetical
vaccine with a maximum vaccine efficacy (VEmax) of 83.0% and minimum VE (VEmin) of 44.0% studied under conditions of force of
infection (FoI) that vary across two orders of magnitude, from a minimum FoI (FoImin) 0.03 to a maximum FoI (FoImax) of 3.50 infections/
person-year.
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had no or just a single case of RVGE of any severity. From those
studies that collected sufficient incidence of any severity RVGE
in the placebo group, an Analysis of Variance failed to detect a
statistically significant difference (p-value= 0.749) when cate-
gorizing FoIobserved by 2020 World Bank country income
classifications (i.e., upper- v upper middle- v lower middle/
lower-income country)21 (Table 1).
For RV1, results from 10 countries in five independent Phase

3 studies17,22–26 (see Table 1) met the above FoIobserved criteria
for interrogation. The best fit trendline analysis of VEobserved as a
function of FoIobserved revealed a linear relationship (Fig. 3a
upper line, Observed VE) with an R2 of 0.3892 and regression
analysis with a Significance F of 0.158. The VEobserved of 94.9% in
one setting (Mexico) with FoIobserved of 13.79 appeared to be a
significant outlier. Reanalysis absent the data from Mexico
revealed a linear relationship (Fig. 3a middle line, Observed VE),
with an R2 of 0.6264 and regression analysis Significance F of
0.0449. Using the VElinear equation (Box 2), the observed VEmax,
VEmin, FoImax, FoImin, and the FoIobserved from each of the 10
countries generated a linear relationship between the calcu-
lated site-specific VE and FoIobserved (Fig. 3a lower line,
Calculated VE). These analyses suggest that rotavirus FoI may
function as a determinant of RV1 VE.
For RV5, results from five settings in three independent

Phase 3 studies17,27–31 (see Table 1) met the above FoIobserved
criteria for interrogation. The best fit trendline analysis of
VEobserved as a function of FoIobserved revealed an independent
relationship (data not shown but provided for review) with an
R2 of −0.215 and regression analysis Significance F of 0.9838.
Interrogating results from 7 settings in five independent Phase
3 studies17,27–32 (see Table 1) by using the incidence of SRVGE
in the placebo group as the FoIobserved and surrogate of λ in the
analyses, the best fit trendline analysis of VEobserved as a
function of FoIobserved revealed a linear relationship (Fig. 3b,
Observed VE) with an R2 of 0.6692 and regression analysis
Significance F of 0.081. Using the VElinear equation (Box 2), the
observed VEmax, VEmin, FoImax, FoImin, and the FoIobserved from

each of the 7 settings in the reanalysis generated a linear
relationship between the calculated site-specific VE and
FoIobserved (Fig. 3b lower line, Calculated VE). These analyses
suggest that rotavirus FoI may function as a determinant of RV5
VE, when the incidence of SRVGE, rather than RVGE of any
severity, in the placebo group serves as the FoIobserved in the
analyses.

CONCLUSION
That a relationship between FoI and VE appears logarithmic for
a parenterally administered malaria vaccine candidate and
linear for two orally administered rotavirus vaccine candidates
may reflect different routes of infection, routes of vaccine
administration, fold differences between the FoImax and FoImin

(i.e., more than a hundred-fold for malaria and less than ten-
fold for rotavirus) or other differences between the pathogens,
host responses, or vaccines. If a causal relationship rather than
an indirect (e.g., pre-exposure effect33), misleading34, or
chance association between FoI and VE exists, then of the
many proposed determinants of setting-dependent VE, FoI
provides one of the most direct, mechanistically proximate
potential determinants. Furthermore, for many but not all
pathogens, modifying the FoI provides one of the most
actionable interventions to enhance or sustain VE. While
improving indirect or distal VE determinants, such as poverty,
gut pathology, co-infections, malnutrition, and the micro-
biome35 could significantly enhance efforts to control and
eliminate simultaneously many pathogens, implementing
interventions that effectively mitigate these VE determinants
is complex and not immediately achievable. In contrast,
modifying the FoI through the concomitant use of affordable,
accessible, available, acceptable, and sustainable NPIs provides
a proximate and actionable approach to optimizing VE.
Considering and then prospectively verifying the speculation
that introduction or continued optimal use of NPIs in an effort
to reduce the FoI and thereby enhance or sustain VE,

Table 1. Rotavirus vaccine Phase 3 study settings by country, World Bank country income classification, and surrogate observed force of infection.

Country Economya FOIobserved (RV#) NTC References

Finland H 16.3 RV5 Not available 39

Brazil UM 16.1 RV1 NCT00140673 24,40

Malawi L 14.4 RV1 NCT00241644 26,41

Mexico UM 13.8 RV1 NCT00140673 24,40

South Africa UM 12.2 RV1 NCT00241644 26,41

EU/USA H 11.2 RV5 NCT00092443 27

China UM 10.6 RV1 NCT01171963 23,42

France H 10.0 RV1 NCT00140686 22,43

Japan H 10.0 RV1 NCT00480324 25,44

Finland H 8.8 RV1 NCT00140686 22,43

Japan H 7.1 RV5 NCT00718237 28

Ghana LM 7.1 RV5 NCT00362648 29

Venezuela UM 6.0 RV1 NCT00140673 24,40

China UM 5.4 RV5 NCT02062385 31

Czech Republic H 4.1 RV1 NCT00140686 22,43

Kenya LM 3.7 RV5 NCT00362648 29

Bangladesh LM n/a RV5 NCT00362648 32

Vietnam LM n/a RV5 NCT00362648 32

a See ref. 21
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respectively, upon vaccine rollout seems prudent and, in the
context of a pandemic, quite urgent.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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